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ANR project: HANUMAN 18-CE45-0014-01

HANUMAN: Human and Animal NUmerical Models for the crANio-spinal system

Numerical models of the craniospinal system for the human ...

... and the marmoset.

Cerebral vascular structures evolution.

Correlation of results between human and animal. Figure: Callithrix Jacchus

My thesis :

Study of the Blood - CerebroSpinal Fluid interaction (CSF).

Study of the IntraCranial Pressure (ICP) autoregulation.

Make real data and numerical models interact.
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Cerebrospinal system

  

Cerebral comp.Dura mater – rigidCerebral SASCerebro-Spinal FluidSpinal SASCerebro-Spinal FluidDural sacDura mater - deformable Spinal cord
Cerebral aqueduct
Ventricular syst.Lateral v. - 3rd v. - 4th v.

Brain

SAS: Sub-Arachnoid Space CSF: CerebroSpinal Fluid
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Cerebral compartment

BrainVenous BloodArterial Blood
CerebroSpinal Fluid

Rigid compartment

4 incompressible volumes

Dynamic system

CerebroSpinal Fluid (CSF): 100 ∼ 150[ml]

Cerebral blood: 30% arterial (high pressure), 70%
venous.
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Cerebral compartment: Volumes interactions

IntraCranial Pressure (ICP)

ICP = CSF pressure

ICP ≃ venous pressure

ICP ̸= arterial pressure

ICP autoregulation

ICP is crucial and must remain stable (Monro-Kellie)

Rigid skull ⇒ total volume is fixed

Arterial peaks ⇒ volumes displacements

Venous flow is
dumped by CSF
displacement
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Cerebral compartment: Relation between sinuses and CSF

CSF productionChoroid plexus
CSF resorptionArachnoid granulations

  

Superior sagittalsinus
Transversesinus(es)

Internjugular(s)
Classical CSF lifecycle

Production by the
choroid plexus, located in
the ventricular system

Resorption by arachnoid
granulations mostly
along sinuses

New point of view: Glymphatic system

Absorption and Resorption take place at the micro-
circulation level continuously.

Non-optimal venous flow ⇒ non-optimal CSF functioning
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Cerebral compartment: Vasculature

Veins

Flexible ⇒ deformable

non circular sections ⇒ collapsible

Huge individual variability
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Cerebral compartment: Main dural venous sinuses

Sinuses

Sinus ̸= veins

folds of dura mater

Quasi-rigid

( ̸= sin(x))

Flows up to down

Focus on large scale
vessels (>2mm ⊘)

Sup. Sagittal Sinus
Straight Sinus

R./L. Transverse S.
R./L. Intern J.
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Cerebral compartment: Blood Flow

Blood

Blood ≃ plasma 54% and red cells 45%

Red cells and other suspensions ≪ [mm]

At macroscale → homogeneous, incompressible and Newtonian

Slightly more viscous than water

Circulation is periodic (T ≃ 0.8s)

Fluid model: Eulerian description

u fluid velocity field

p its pressure field

Fluid dynamic = incompressible Navier-Stokes equations
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Available data: Morphology

work Guillaume Dollé, software: 3D slicer + in-house plugin.
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Available data: Morphology

Mesh example for T2 individual from HyperPIC.
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Available data: Variability

All healthy people

See [Streeter, 1915, M Das and Al Khalili, 2022], image from [Park et al., 2008].
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Available data: Velocity measurements

Phase-Contrast MRI(PC-MRI)
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Available data: Velocity measurements

  

Velocity map

velocity amplitude in the direction
normal to the slice

1 measurement per (non-zero) pixel

Processed with the software Flow from CHIMERE team.
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Available data: Velocity measurements

8 raw signals
● Interpolation by splines
● Displaced volumes are computed

● Rescaling by group
● Master group = transverse sinuses 

Use in numerical model
● Any time re-stepping possible
● Any number of cycles

https://gitlab.com/piemollo/phimod/frm
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Available data: Limitations and goals

Limitations

Only partial knowledge of the velocity field

No pressure measurements (or invasive)

High inter-individual variability and numerical approximation error

Exact physiological parameters are unknown

Approach used

Use numerical models to complete the information

Link pressure and velocity with fluid model

Develop semi-automatic and/or unified data processing

Develop a data assimilation framework to manage the uncertainty
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Fluid modelling

Time discretization: δt = T/K , tk = kδt, 0 ≤ k ≤ K .
Velocity field: uk = u(tk , .) ∈ V := {v ∈ [H1(Ω)]d , v|ΓWall

= 0, v|Γinput = g}.
Pressure field: pk = p(tk , .) ∈ Q := L2(Ω).

Navier-Stokes equations



ρ∂u
∂t + ρ(u · ∇)u− η∆u+∇p = f in [0,T ]× Ω

∇ · u = 0 in [0,T ]× Ω

u = 0 on [0,T ]× ΓWall

u = g on [0,T ]× ΓInput

η ∂u
∂n + pn = Pn on [0,T ]× ΓOutput

u = u0 on {0} × Ω

ρ fluid density

η kinematic viscosity

f external forces

g inflow

P external pressure

u0 initial state

Remarks: no pressure issue with Neumann B.C. - solve using Taylor-Hood P2 − P1 FE -
linearization using charac. method [Pironneau, 1982].
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Fluid modelling: Simulation framework

  

Inflow

Outflow

Simulation setup

3 cardiac cycles simulated

2 firsts are removed

800ts/cycle

≃ 1.5M degrees of freedom

14h/simulation (4cores on ROMEO)

Solver: FreeFem [Hecht, 2012]

Outflow

Fully resistive Windkessel model

Different resistances at each intern
jugular

ROMEO: ROMEO Super Computer Center https://romeo.univ-reims.fr/
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Fluid modelling: Simulation results
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Reduction: Parameterized model

  

Vh
Mh

Parameterized model

Parameter:

µ = (η,R1,R2) ∈ P

Forward problem:

u : µ ∈ P 7→ u(µ) ∈ VK
h

Manifold

Mh = {uk(µ) ∈ Vh, 1 ≤ k ≤ K , µ ∈ P}
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Reduction: Reduced Order Basis

  

Vh
Mh

ZN

εN

u μ( 1) u μ( 2)
u μ( ...)

u μ( I)

Generate the data base

Forward problem solved using FE

Snapshots computed with parameters:

S =
{
u1(µ1), . . . , u

K (µQ)
}
∈ VKQ

h

Weak encapsulation

ZN = span(ζ1, . . . , ζN)

∀v ∈ S , ∥v − πZN
v∥Vh

≤ εN
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Reduction: Applications

Online/Offline strategy

offline: Reduced Basis building (on Supercomputers)

online: use the RB

many query problem ⇒ optimization, optimal control, uncertainty quantification, etc.
real time computation ⇒ time dependent problems, digital twins
portable computation ⇒ on micro-devices, smartphones or integrated in softwares

Several methods

Greedy approach

Proper Orthogonal Decomposition (POD)

Empirical Interpolation Method (EIM) and variations
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Reduction: Applications

  

● State estimation
● Data assimilation● Parameter estimation

● Uncertainty quantification
● Optimal control
● Portable computation

Projective solversGalerkin solvers

Data compressionModel compression
● Portable patient specific simulations
● Chapters 4, 5  (2019-2021)

● Exploit real MRI data
● Chapters 4, 6-8  (2021-2022)

● Inf-sup stabilization
● Complex implementation

● State estimation framework built
● Many perspectives

● Parameter decomposition
● A priori error estimate
● Greedy procedure
● Optimal nb. of snapshots ● Snapshot database

● POD, EIM
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Reduction: Proper Orthogonal Decomposition

Proper Orthogonal Decomposition [Quarteroni et al., 2016]

For S =
[
v1| . . . |vNs

]
∈ RN×Ns , build the correlation matrix C ∈ RNs×Ns given by:

(C)ij =
(
vi , vj

)
Vh
, 1 ≤ i , j ≤ Ns ⇔ C = StXS.

Given the Singular Value Decomposition, i.e. C = UΣVt , and let N ≤ Ns . We build
ZN ∈ RN×N such that

(ZN)i =
1

√
σi
S(V)i , i = 1, . . . ,N.

Hence, we have the following result

Ns∑
n=1

∥vn − πZN
vn∥2Vh

=
Ns∑

j=N+1

σj .
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Reduction: Proper Orthogonal Decomposition

Proper Orthogonal Decomposition: Optimal Reduced Basis

Let W = {WN ∈ RN×N |Wt
NXWN = IN} and WN = span(WN). The reduced basis built is

optimal in the following sense:

Ns∑
n=1

∥vn − πZN
vn∥2Vh

= min
WN∈W

Ns∑
n=1

∥vn − πWN
vn∥2Vh

Link with the Kolmogorov N-width

The decay of the correlation matrix spectrum, i.e. decay of σ1 ≤ · · · ≤ σNs , reports on the
Kolmogorov N-width and the problem compressibility:

fast decay = small KNw = high compression

slow decay = large KNw = low compression
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Reduction: Back in fluid context

Setup One time-snapshot

Q = 1, K = 800 ⇒ 1 simulation

Monolithic approach

vi = (ui (µ), pi (µ)) ∈ Vh × Qh = Zh

⟨(u, p), (v, q)⟩Zh
= γ⟨u, v⟩Vh

+ (1− γ)⟨p, q⟩Qh

Hybrid approach: γ = ∥p̃∥/∥ũ∥

Relative mean quadratic Projection Error

RPE(S,ZN) =

√√√√ 1

Ns

Ns∑
n=1

∥vn − πZN
vn∥2Vh

∥vn∥2Vh
Velocity Pressure
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Reduction: Practical algorithm

Standard POD

C is a KQ-sized full symmetric matrix

all the spectrum is needed

only N ≪ QK eigen vectors are needed

. . . Full SVD is overkill.

Too expansive when QK > 2000.

Partial POD

Spectrum estimation using QR-method
iterations

get only the N needed eigen vectors
with power (or Lanczos) method

Allows to compute POD for large data set.
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Data fitting: Measurement model

  

ωm

d MRI measurement model

lm(v) =

∫
ωm

d · v dx

measures fluid velocity in the direction d

voxel sizes depend on MRI resolution

Nb of measure (possibly)

M = nb slices× nb pixels

Observations are denoted

yobs = LM(v) =
(
l1(v), . . . , lM(v)

)t ∈ RM .

Similar to [Galarce et al., 2021b].
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Data fitting: Minimization problem

yobs = LM(utrue)

We assume that the model is reasonable,

z∗ = arg inf
z∈ZN

∥LM(z)− yobs∥2RM ,2

Algebraic problem

α∗ = arg inf
α∈RN

∥LZα− yobs∥2RM

well posed if M ≤ N

can set linear constraints on α
[Gong et al., 2019, Bui et al., 2022]

Decomposition in ROB

Using the ROB ZN = span(ζ1, . . . , ζN)

z =
N∑

n=1

αnζn

Hence,

LM(z) =
N∑

n=1

αnLM(ζn)

= LMZN︸ ︷︷ ︸
LZ∈RM×N

α
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Data fitting: Update space

  

Vh

π   utrueutrue

π   utrue+ UM
⊥
UM

UM

UM

UM = span(w1, . . . ,wM)

where

lm(v) = ⟨wm, v⟩Vh
, 1 ≤ m ≤ M
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Data fitting: Parametrized Background Data Weak approach

  

Vh
Mh

ZN

εN

u μ( 1) u μ( 2)
u μ( ...)

u μ( I)

π   utrueutrue

z*

π   utrue+ UM
⊥
UMu*

UM

UM

PBDW statement [Maday et al., 2015]

(z∗, υ∗) = arg inf
(z,υ)∈ZN×UM

∥LM(z + υ)− yobs∥2RM + ξ∥υ∥2Vh︸ ︷︷ ︸
regularization

LM(υ∗) =
M∑

m=1

β∗
mLM(wm)︸ ︷︷ ︸

LU∈RM×M

(α∗, β∗) = arg inf
(α,β)∈RN×RM

∥LZα+ LUβ − yobs∥RM + . . .
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Results: Synthetic MRI acquisitions

M = 263 measurements

Measurements are possibly correlated

Synthetic measurements based on real MRI protocol
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Results: Estimation

Training set (reduced basis)

Q = 8, K = 800 ⇒ 6400 snapshots

Test set

Q = 2, K = 800 ⇒ 1600 snapshots
(not in the training set)

Relative mean quadratic Estimation Error

REE(ZN,LM) =

√√√√ 1

#S test

∑
v∈Stest

∥v − v∗∥2.
∥v∥2.

Velocity Pressure
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Results: Real data

Simulation and reduction frameworks ready

State estimation framework ready

Synthetic measurements are based on real MRI protocol

Mesh geometry not precise enough

Voxel location not precise enough
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Conclusion and Perspectives

Conclusion

Frameworks are built

Pipeline from raw data to realistic simulations is built

Encouraging results with synthetic data

Real data are ready to be integrated

Perspectives

Improve the geometry and fluid model

Improve the estimation method
(e.g. non-linear approaches, physics-based constraints)

Improve the monolithic reduction

Some images in this document are used by courtesy of Visible Body and O. Balédent.
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State estimation with noise

Gaussian noise

Dense random measurements

AM: Artificial Measurements (based on weak free-divergence)

[Taddei, 2017, Gong et al., 2019, Bui et al., 2022]
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Taylor-Hood FE convergence w.r.t. space step

Field Space convergence Time convergence

Velocity ∥.∥L2 3 1
Velocity ∥.∥H1 2 1
Pressure ∥.∥L2 2 1

[Girault and Raviart, 1986, Verfürth, 1984]
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